Keynote MRC Lecture: Jeremy K. Nicholson

MRCNicolsonPhotoresized.jpgJeremy K. Nicholson will deliver the 2013 SOT Annual Meeting MRC Lecture, “Phenotyping the Patient Journey: Making Systems Medicine Work in the Real World,” on Wednesday, March 13, 2013, from 8:00 am to 9:00 am in the Henry B. Gonzalez Convention Center, San Antonio, Texas. Dr. Nicholson is head of the Department of Surgery and Cancer at Imperial College London. He also is a consultant for many pharmaceutical/healthcare companies in the United Kingdom, Europe, and the United States, and is a founder director of Metabometrix, an Imperial College spin-off company specializing in molecular phenotyping, clinical diagnostics, and toxicological screening via metabonomics and metabolomics.

The abstract of this lecture states that “Systems biology tools can be applied at both individual and population levels to understand integrated biochemical function in relation to disease pathogenesis. Metabolic phenotyping offers an important window on systemic activity and both advanced spectroscopic approaches can be used to characterize disease processes and responses to therapy. There is now wide recognition that the extensive cross-talk and signalling between the host and the symbiotic gut microbiome links to both the responses to therapy and disease risk factors and indeed these also modulate drug toxicity. Such symbiotic supraorganismal interactions greatly increase the degrees of freedom of the metabolic system that poses significant challenges to fundamental notions on the nature of the human diseased state, the aetiopathogenesis of common diseases, and current systems modelling requirements for personalized medicine. We have developed scalable and translatable strategies for phenotyping the hospital patient journey using top-down systems biology tools that capitalize on the use of both metabolic modelling and pharmaco-metabonomics for diagnostic and prognostic biomarker generation to aid clinical decision making at point-of-care. Such diagnostics (including those for near real-time applications, as in surgery and critical care) can be extremely sensitive for the detection of diagnostic and prognostic biomarkers in a variety of conditions and are a powerful adjunct to conventional procedures for disease assessment that are required for future developments in precision medicine including understanding of the symbiotic influences on patient state. Many biomarkers also have deeper mechanistic significance and may also generate new therapeutic leads or metrics of efficacy for clinical trial deployment. Furthermore, the complex and subtle gene-environment interactions that generate disease risks in the general human population also express themselves in the metabolic phenotype, and, as such, the Metabolome Wide Association Study approach gives us a powerful new tool to generate disease risk biomarkers from epidemiological sample collections and for assessing the health of whole populations. Such population risk models and biomarkers can also feedback to individual patient healthcare models thus closing the personal and public healthcare modelling triangle.”

Dr. Nicholson has won many accolades and international prizes for his work, which spans three decades, and is the author of over 500 peer-reviewed scientific papers and many other articles/patents on the development and application of novel spectroscopic and systems biology approaches to the investigation of disturbed metabolic processes in complex organisms. He was elected as a Fellow of the Academy of Medical Sciences in 2010 and currently holds honorary professorships at eight overseas universities and the Chinese Academy of Sciences, and is on the editorial board of eight international scientific journals.

Dr. Nicholson will be holding a discussion with postdoctoral and graduate student SOT members following his lecture. This will be a ticketed event, limited to 40 participants.

Recent Stories
SOT Concludes a Successful 2020 Virtual Meeting

Engage with the 2020 Virtual ToxExpo

Reflections on the 2020 Virtual Undergraduate Education Program